Программа курса «Занимательная математика» по составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования. Организация педагогом различных видов деятельности школьников во внеучебное время, позволяет закрепить знания по предмету, повысить качество успеваемости, активизировать умственную и творческую деятельность учащихся, сформировать интерес к изучению математики.
Программа данного курса представляет систему занятий, направленных на формирование умения нестандартно мыслить, анализировать, сопоставлять, делать логические выводы, на расширение кругозора учащихся, рассчитана на 34 часа, 1час в неделю.
Актуальность курса состоит в том, что он направлен на расширение знаний учащихся по математике, развитие их теоретического мышления и логической культуры.
Новизна данного курса заключается в том, что программа включает новые для учащихся задачи, не содержащиеся в базовом курсе. Предлагаемый курс содержит задачи по разделам, которые обеспечат более осознанное восприятие учебного материала. Творческие задания позволяют решать поставленные задачи и вызвать интерес у обучающихся. Включенные, в программу задания позволяют повышать образовательный уровень всех учащихся, так как каждый сможет работать в зоне своего ближайшего развития.
Отличительные особенности данного курса состоит в том, что этот курс подразумевает доступность предлагаемого материала для учащихся, планомерное развитие их интереса к предмету. Сложность задач нарастает постепенно. Приступая к решению более сложных задач, рассматриваются вначале простые, входящие как составная часть в решение трудных. Развитию интереса способствуют математические игры, викторины, проблемные задания и т.д.
Цель программы:
Создание условий и содействие интеллектуальному развитию детей.
Привитие интереса учащихся к математике.
Отрабатывать навыки решения нестандартных задач.
Воспитание настойчивости, инициативы.
Развитие математического мышления, смекалки, математической логики.
Развитие математического кругозора, мышления, исследовательских умений учащихся и повышение их общей культуры.
Развитие у учащихся умений действовать самостоятельно (работа с сообщением, рефератом, выполнение творческих заданий).
Создать своеобразную базу для творческой и исследовательской деятельности учащихся.
Повысить информационную и коммуникативную компетентность учащихся.
Формирование умений выдвигать гипотезы, строить логические умозаключения, пользоваться методами аналогии, анализа и синтеза.
Формы и методы проведения занятий
Изложение теоретического материала факультативных занятий может осуществляться с использованием традиционных словесных и наглядных методов: рассказ, беседа, демонстрация видеоматериалов, наглядного материала, а также интернет ресурсов.
При проведении занятий по курсу на первое место выйдут следующие формы организации работы: групповая, парная, индивидуальная.
Методы работы: частично-поисковые, эвристические, исследовательские, тренинги.
Ведущее место при проведении занятий должно быть уделено задачам, развивающим познавательную и творческую активность учащихся. Изложение материала может осуществляться с использованием активных методов обучения.
Важным условием организации процесса обучения на факультативных занятиях является выбор учителем рациональной системы форм и методов обучения, её оптимизация с учётом возрастных особенностей учащихся, уровня математической подготовки, а также специфики образовательных и воспитательных задач.
Формы организации деятельности обучающихся:
- индивидуально-творческая деятельность;
- творческая деятельность в малой подгруппе (3-6 человек);
- коллективная творческая деятельность,
- работа над проектами,
- учебно-игровая деятельность (познавательные игры, занятия);
- игровой тренинг;
- конкурсы, турниры.
Общая характеристика курса
Обучение детей организуется в форме игры, обеспечивающих эмоциональное взаимодействие и общение со взрослым. Создаются условия для свободного выбора ребёнком содержания деятельности и возникновения взаимообучения детей. Основное место занимает содержание взаимодействия и общение взрослого с детьми, основанное на понимании того, что каждый ребёнок обладает неповторимой индивидуальностью и ценностью, способен к непрерывному развитию.
Формируются такие качества и свойства психики детей, которые определяют собой общий характер поведения ребенка, его отношение ко всему окружающему и представляют собой «заделы» на будущее, так как именно в этот период складывается потенциал для дальнейшего познавательного, волевого и эмоционального развития ребёнка.
Задачи данного курса решаются в процессе ознакомления детей с разными областями математической действительности: с количеством и счетом, измерением и сравнением величин, пространственными и временными ориентировками.
Данный курс создаёт условия для развития у детей познавательных интересов, формирует стремление ребёнка к размышлению и поиску, вызывает у него чувство уверенности в своих силах, в возможностях своего интеллекта. Во время занятий по предлагаемому курсу происходит становление у детей развитых форм самосознания и самоконтроля, у них исчезает боязнь ошибочных шагов, снижается тревожность и необоснованное беспокойство. В результате этих занятий ребята достигают значительных успехов в своём развитии.
Методы и приёмы организации деятельности на занятиях по развитию познавательных способностей ориентированы на усиление самостоятельной практической и умственной деятельности, а также познавательной активности детей. Данные занятия носят не оценочный, а в большей степени развивающий характер. Поэтому основное внимание на занятиях обращено на такие качества ребёнка, развитие и совершенствование которых очень важно для формирования полноценной мыслящей личности. Это – внимание, восприятие, воображение, различные виды памяти и мышление.
Личностные, метапредметные результаты освоения конкретного учебного курса:
Личностными результатами изучения курса «Занимательная математика» являются формирование следующих умений и качеств:
развитие умений ясно, точно и грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи;
креативность мышления, общекультурное и интеллектуальное развитие, инициатива, находчивость, активность при решении математических задач;
формирование готовности к саморазвитию, дальнейшему обучению;
выстраивать конструкции (устные и письменные) с использованием математической терминологии и символики, выдвигать аргументацию, выполнять перевод текстов с обыденного языка на математический и обратно;
стремление к самоконтролю процесса и результата деятельности;
способность к эмоциональному восприятию математических понятий, логических рассуждений, способов решения задач, рассматриваемых проблем.
Метапредметным результатом изучения курса является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
разрабатывать простейшие алгоритмы на материале выполнения действий с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
сверять, работая по плану, свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать план);
совершенствовать в диалоге с учителем самостоятельно выбранные критерии оценки.
Познавательные УУД:
формировать представление о математической науке как сфере человеческой деятельности, о ее значимости в развитии цивилизации;
проводить наблюдение и эксперимент под руководством учителя;
осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
определять возможные источники необходимых сведений, анализировать найденную информацию и оценивать ее достоверность;
использовать компьютерные и коммуникационные технологии для достижения своих целей;
создавать и преобразовывать модели и схемы для решения задач;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
анализировать, сравнивать, классифицировать и обобщать факты и явления;
давать определения понятиям.
Коммуникативные УУД:
самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т. д.);
в дискуссии уметь выдвинуть аргументы и контраргументы;
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Предметные результаты.
Учащиеся должны научиться анализировать задачи, составлять план решения, решать задачи, делать выводы.
Решать задачи на смекалку, на сообразительность.
Решать логические задачи.
Работать в коллективе и самостоятельно.
Расширить свой математический кругозор.
Пополнить свои математические знания.
Научиться работать с дополнительной литературой.
Содержание учебного курса
Раздел 1: Решение логических задач.
Тема 1. Задачи типа "Кто есть кто?"
Существует несколько методов решения задач типа «Кто есть кто?». Один из методов решения таких задач –метод графов. Второй способ, которым решаются такие задачи – табличный способ.
Тема 2. Круги Эйлера.
Метод Эйлера является незаменимым при решении некоторых задач, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие.
Тема 3. Задачи на переливание.
Задачи на переливания, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости.
Тема 4. Задачи на взвешивание.
Достаточно распространённый вид математических задач. Поиск решения осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой.
Тема 5. Олимпиадные задания по математике.
Задачи повышенной сложности.
Итоговое занятие: Математический КВН
Раздел 2: Текстовые задачи
Тема 6. Текстовые задачи, решаемые с конца.
Познакомить учащихся с решением текстовых задач с конца. Решение нестандартных задач.
Тема 7. Задачи на движение.
Работа по теме занятия. Решение задач.
Тема 8. Задачи на части
Работа по теме занятия. Решение задач.
Тема 9. Задачи на проценты
Работа по теме занятия. Решение задач.
Итоговое занятие: Математическое соревнование (математическая карусель).
Объяснение правил математической карусели. Математическая карусель.
Раздел 3: Геометрические задачи
Тема 10. Историческая справка. Архимед
Работа по теме занятия. Доклад ученика об Архимеде.
Тема 11. Геометрия на клетчатой бумаге. Формула Пика.
Работа по теме занятия. Решение задач.
Тема 12. Решение задач на площадь.
Работа по теме занятия. Решение задач.
Тема 13. Геометрические задачи (разрезания).
Решение геометрических задач путём разрезания на части.
Итоговое занятие: Математическое соревнование.
Виды математических соревнований.
Календарно-тематическое планирование
|
|
Количество часов |
|
|
Решение логических задач 16 часов |
|
|
1 |
Задачи типа «Кто есть кто?» Метод графов. |
1 |
|
2 |
Задачи типа «Кто есть кто?» Табличный способ |
1 |
|
3 |
Решение задач. |
1 |
|
4 |
Круги Эйлера |
1 |
|
5 |
Решение задач |
1 |
|
6 |
Задачи на переливание |
1 |
|
7 |
Решение задач |
1 |
|
8 |
Задачи на взвешивание |
1 |
|
9 |
Решение задач. |
1 |
|
10 |
Олимпиадные задания по математике. |
3 |
|
11 |
Задачи повышенной сложности. |
3 |
|
12 |
Математический КВН |
1 |
|
|
Текстовые задачи 11 часов |
|
|
11 |
Текстовые задачи, решаемые с конца. |
1 |
|
12 |
Решение задач |
1 |
|
13 |
Задачи на движение. |
1 |
|
14 |
Решение задач |
1 |
|
15 |
Задачи на части |
1 |
|
16 |
Решение задач |
1 |
|
17 |
Задачи на проценты. |
1 |
|
1 |
Решение задач. |
1 |
|
19 |
Повторение. |
2 |
|
20 |
Математическая карусель. |
1 |
|
|
Геометрические задачи 7 часов |
|
|
21 |
Историческая справка. Архимед |
1 |
|
22 |
Геометрия на клетчатой бумаге |
1 |
|
23 |
Формула Пика |
1 |
|
24 |
Решение задач. |
1 |
|
25 |
Решение задач на площадь |
1 |
|
26 |
Решение задач на площадь |
1 |
|
27 |
Математическое соревнование. |
1 |
|
Литература:
Летняя математическая школа: теория, задания, математические бои, олимпиады, опыт организации. Под редакцией Ф.Ф. Лысенко, С.О. Иванова. – Ростов – на – Дону:Легион, 2013.
Фарков А.В. Математические олимпиады . Методика подготовки. 5-8 классы. /- М.: ВАКО, 2016.
Фарков А.В. Обучаемость учащихся математике: проблемы диагностики. 5-11 классы. – М. ВАКО, 2015.
Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия,. 5-6 класс. Учебник. — 15-е изд., стер. — М. : Дрофа, 2013.
Депман И.Я., Виленкин Н.Я. За страницами учебника математики: Пособие для учащихся 5-6 кл. сред. шк. – М.: Просвещение, 2009.
Тонких, А.П. Логические игры и задачи на уроках математики./ Л.Ф.Тихомирова– Ярославль, Академия развития, 2010.