КОНСПЕКТЫ УРОКОВ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ЭЛЕКТИВНЫЙ КУРС

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

НАЧАЛЬНАЯ ШКОЛА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

РУССКИЙ ЯЗЫК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ЛИТЕРАТУРА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

АНГЛИЙСКИЙ ЯЗЫК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ИСТОРИЯ РОССИИ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ВСЕМИРНАЯ ИСТОРИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

БИОЛОГИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ГЕОГРАФИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

физика

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке


Эта сила сообщает ускорение

где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением , если заряд частицы положителен (q > 0), и будет противоположно , если заряд отрицателен (q<0).

Если электростатическое поле однородное ( = const), то ускорение a = const и частица будет совершать равноускоренное движение (разумеется, при отсутствии других сил). Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась  или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый О < a < 90° (или тупой), то заряженная частица в таком электростатическом поле будет двигаться по параболе.

Во всех случаях при движении заряженной частицы в электростатическом поле будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

Существенное отличие магнитного поля от электростатического состоит, во-первых, в том, что магнитное поле не действует на покоящуюся заряженную частицу. Магнитное поле действует только на движущиеся в поле заряженные частицы. Во-вторых, сила Лоренца, действующая на заряженные частицы в магнитном поле, всегда перпендикулярна скорости их движения. Поэтому модуль скорости в магнитном поле не изменяется. Не изменяется, следовательно, и кинетическая энергия частицы. Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Возможны три различных случая.

Заряженная частица влетает в магнитное поле со скоростью , направленной вдоль поля  или противоположно направлению магнитной индукции поля . В этих случаях сила Лоренца  и частица будет продолжать двигаться равномерно прямолинейно.

Заряженная частица движется перпендикулярно линиям магнитной индукции (рис. 1), тогда сила Лоренца , а следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы. В результате частица будет двигаться по окружности, радиус которой можно найти на основании второго закона Ньютона:

Отношение  — называют удельным зарядом частицы.

Рис. 1

Период вращения частицы

то есть период вращения не зависит от скорости частицы и радиуса траектории. На этом основано действие циклотрона.

Скорость заряженной частицы направлена под углом α к вектору  (рис. 2).

Рис. 2

Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью  и движения по окружности с постоянной по модулю скоростью  в плоскости, перпендикулярной полю. Радиус окружности определяется аналогично предыдущему случаю, только надо заменить ν на , то есть

В результате сложения этих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю. Шаг винтовой линии

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол a с направлением вектора  неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией  действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца

 

Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке

$IMAGE20$

Эта сила сообщает ускорение

$IMAGE17$

где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением $IMAGE19$, если заряд частицы положителен (q > 0), и будет противоположно $IMAGE19$, если заряд отрицателен (q<0).

Если электростатическое поле однородное ($IMAGE19$ = const), то ускорение a = const и частица будет совершать равноускоренное движение (разумеется, при отсутствии других сил). Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась $IMAGE15$ или ее начальная скорость сонаправлена с ускорением $IMAGE16$, то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если $IMAGE14$, то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый О < a < 90° (или тупой), то заряженная частица в таком электростатическом поле будет двигаться по параболе.

Во всех случаях при движении заряженной частицы в электростатическом поле будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

Существенное отличие магнитного поля от электростатического состоит, во-первых, в том, что магнитное поле не действует на покоящуюся заряженную частицу. Магнитное поле действует только на движущиеся в поле заряженные частицы. Во-вторых, сила Лоренца, действующая на заряженные частицы в магнитном поле, всегда перпендикулярна скорости их движения. Поэтому модуль скорости в магнитном поле не изменяется. Не изменяется, следовательно, и кинетическая энергия частицы. Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Возможны три различных случая.

Заряженная частица влетает в магнитное поле со скоростью v, направленной вдоль поля $IMAGE11$ или противоположно направлению магнитной индукции поля $IMAGE12$. В этих случаях сила Лоренна $IMAGE11$ и частица будет продолжать двигаться равномерно прямолинейно.

Заряженная частица движется перпендикулярно линиям магнитной индукции (рис. 1), тогда сила Лоренца $IMAGE10$, а следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы. В результате частица будет двигаться по окружности, радиус которой можно найти на основании второго закона Ньютона:

$IMAGE9$

Отношение $IMAGE8$ — называют удельным зарядом частицы.

$IMAGE22$

Рис. 1

Период вращения частицы

$IMAGE7$

то есть период вращения не зависит от скорости частицы и радиуса траектории. На этом основано действие циклотрона.

Скорость заряженной частицы направлена под углом a к вектору $IMAGE18$ (рис. 2).

$IMAGE21$

Рис. 2

Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью $IMAGE6$ и движения по окружности с постоянной по модулю скоростью $IMAGE5$ в плоскости, перпендикулярной полю. Радиус окружности определяется аналогично предыдущему случаю, только надо заменить v на $IMAGE5$, то есть

$IMAGE4$

В результате сложения этих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю. Шаг винтовой линии

$IMAGE2$

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол a с направлением вектора $IMAGE18$ неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией $IMAGE18$ действует одновременно и электростатическое поле с напряженностью $IMAGE19$, то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца

$IMAGE1$

Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

Поиск

МАТЕМАТИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ФИЗИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ОБЖ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

МХК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

МУЗЫКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

РОБОТОТЕХНИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ВСЕРОССИЙСКИЕ ПРОВЕРОЧНЫЕ РАБОТЫ

УЧИТЕЛЮ НА ЗАМЕТКУ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ЭРУДИТ-КОМПАНИЯ

ДОСУГ ШКОЛЬНИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж
Яндекс.Метрика Рейтинг@Mail.ru