КОНСПЕКТЫ УРОКОВ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ЭЛЕКТИВНЫЙ КУРС

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

НАЧАЛЬНАЯ ШКОЛА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

РУССКИЙ ЯЗЫК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ЛИТЕРАТУРА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

АНГЛИЙСКИЙ ЯЗЫК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ФРАНЦУЗСКИЙ ЯЗЫК

ИСТОРИЯ РОССИИ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ВСЕМИРНАЯ ИСТОРИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

БИОЛОГИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ГЕОГРАФИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ИНФОРМАТИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

 

Волшебное слово «пока»
Лучший ответ на слова: «У меня не получается!» – «Пока не получается»

Способствует формированию уверенности в себе и осознанию того, что в математике разобраться непросто, но это вполне нормально.

Иногда начало математической карьеры вашего чада омрачается столкновением с каким-то сложным для овладения материалом. Это может быть деление в столбик или приведение простых дробей к общему знаменателю, – не важно, что именно, но в конце вы чаще всего слышите: «У меня не получается!» Самым правильным ответом тут будет: «Пока не получается». Это пока не получается найти общий знаменатель. Это пока не получается правильно делить в столбик без остатка. Волшебное слово из четырех букв способствует тому, что в педагогике называется «установкой на динамическое развитие». Проще говоря, математика – это не то, что ты способен сделать с ходу, а то, чему необходимо научиться, как, например, игре на фортепиано.

Этот совет придется особенно кстати при выполнении домашних заданий, но он применим абсолютно ко всему, что вашему ребенку предстоит осваивать.


Думать вслух
Считая в уме, рассуждаем вслух

Способствует осознанию того, что правильные ответы возникают не по волшебству, а в результате размышлений и что к одному и тому же ответу можно прийти несколькими путями.

Если в тот момент, когда вам надо что-то подсчитать, рядом с вами находится ваш ребенок, обязательно рассуждайте вслух. И не важно, что вы считаете в уме как вычислительная машина. Сбавьте скорость, чтобы он успевал за ходом ваших рассуждений. Таким способом вы внятно дадите ему понять, что, для того чтобы прийти к какому-то умозаключению, надо потрудиться, но, кроме всего прочего, прийти к нему можно разными путями.

Рассуждая вслух, вы станете прекрасным примером для подражания: ваш ребенок с удовольствием начнет делать то же самое. Очень хорошо, если время от времени в ваши рассуждения будут вкрадываться ошибки – опять-таки ребенок поймет, что ошибки случаются и в этом нет ничего страшного (разумеется, в конце их нужно обязательно исправить и прийти к верному результату).

 

Ты очень стараешься, ты молодец!
Усилие заслуживает похвалы больше, чем результат

Способствует поддержанию мотивации ребенка к дальнейшей работе.

Когда ребенок хорошо написал контрольную, так и хочется сказать ему, какой он умница. Вся беда в том, что, говоря так, родители совершают серьезную ошибку. Всемирно известный психолог из Стэнфордского университета Кэрол С. Двек в своих трудах доказывает, что дети, которым говорят, что они блестяще успевают по математике, нередко теряют уверенность в себе и справляются с программой все хуже и хуже. Им кажется, что в начале они действительно были «умницами» – ведь им все давалось играючи, – зато теперь над задачами приходится попотеть, а значит, ума у них поубавилось.

Двек настаивает, что хвалить надо не за результат, а за приложенные усилия. Похвала, а то и награда за старание ведет к тому, что ребенок гордится тем, что честно поработал, и в будущем продолжит работать с удовольствием. А для большинства детей успех на математическом поприще напрямую зависит от практики, поэтому чем большее поощрение встречает их стремление заниматься, тем лучше они успевают.



 

Злобный Фрэмптон
Злобный Фрэмптон – кукла, которая всех путает

Способствует практике устного и кратного счета.

Фрэмптон – кукла, сделанная из кулака, но он не задавака, как Арнольд, а злодей. Нет для него большей радости, чем путать последовательность в кратном счете, делать ошибки и подсказывать неправильные ответы.

– А я знаю, как посчитать до десяти: раз, четыре, три, шесть, восемь…

– А я знаю, как считать «тройками»: три, шесть, десять, тринадцать…

Фрэмптону еще очень нравятся всякие козни, поэтому он с удовольствием прячет цифры.

– Я знаю, сколько будет семь плюс восемь, но я спрятал ответ, поэтому его никто не найдет! – произносит он утробным голосом (так и хочется добавить какое-нибудь зловещее «ха-ха-ха!»).

Ребенок с восторгом вступает в поединок со злодеем Фрэмптоном, заявляя, что ответ, который он спрятал, найден и равняется 15.

– У-у-у, я так не играю. Как ты узнал?

 

Сколько еще до?..
Неожиданные ответы на вопросы о времени

Способствует осознанию пропорциональности и масштаба.

«Сколько еще до маминого прихода?», «А сколько еще до моего дня рождения?», «А сколько нам еще ехать?» – все это вопросы о времени, а время очень трудно себе представить. Поэтому, когда ваш ребенок спрашивает: «Сколько еще?», вы, вместо того чтобы дать ему ответ в часах, неделях или месяцах, вытягиваете вперед обе руки, разводите их и произносите: «Вот столько». Реакция сначала может быть несколько недоуменной. Разве время и расстояние между двумя руками – это одно и то же?

Попробуйте объяснить в сравнении, апеллируя к чему-то ребенку уже известному:

– С момента отъезда мы проехали вот сколько (показываете руками, сколько именно), а осталось нам ехать еще вот столько (расстояние между руками пропорционально изменяется).

Таким образом, ребенок может наглядно оценить, сколько еще осталось ждать: столько же, в два раза больше времени, чем прошло, какую-то долю от того времени, которое прошло, и т. д.

Для показа есть масса вариантов.

– Вот сколько нам осталось до завтра (показываете кончик пальца). А вот сколько осталось до твоего дня рождения! (Вы большими шагами идете к окну и простираете руки в обе стороны, чтобы подчеркнуть разницу.)


Дробный возраст
Помогите детям вычислить их точный возраст

Способствует усвоению простых дробей.

Собственный возраст занимает ребенка с раннего детства, как и вопрос, сколько еще до следующего дня рождения, поэтому он легко усваивает, что в промежутке между прошлым и будущим днями рождения могут возникнуть всякие «половинки» и «четверти».

Достоинство календарного года с математической точки зрения состоит в том, что 12 месяцев без остатка делятся на равные доли: 6 месяцев – половина, 3 месяца – четверть, 4 месяца – треть, 2 месяца – одна шестая.

Так что если вашему малышу 5 лет и 5 месяцев, ему можно объяснить, что это почти 5 с половиной. А когда ему исполнится 6, он уже сможет понять, что 6 месяцев – это полгода, а 3 месяца – половина половины, то есть четверть (можно показать на диаграмме), так что вы вместе подсчитаете его «дробный возраст».

Можно включать это в задачки для устного счета, например:

– Тебе сейчас восемь и две шестых, а твоему другу восемь с половиной, кто из вас старше?

 

Что выгоднее?..
Что из предложенного сделает тебя богаче?

Вам понадобится калькулятор.

Способствует развитию навыков предварительной оценки и вычислений с помощью калькулятора.

Задайте ребенку задачу на выбор одного из двух, например:

• У тебя есть столбик монет в один фунт высотой в твой рост или груда монет по 20 пенсов, вес которой равен твоему весу. Где денег больше?

• Что ты выберешь: пенни за каждый прожитый день или пенни за каждый миллиметр роста?


Основания для выбора и способы их математической проверки можно объяснить заранее, а потом усадите ребенка обсчитывать предложение, показавшееся ему более выгодным.

Следующим шагом может стать аналогичный тендер, придуманный самим ребенком.


Остатки сладки
Как поделить на всех то, что без остатка не делится?

Способствует усвоению простых дробей и умению делить в уме.

Предположим, у вас осталось пять печений, а вас трое. Как будете делить? Подобная ситуация открывает возможности для устного счета, кроме того, ребенок, чувствуя, что здесь задеты его кровные интересы, легко позволит вовлечь себя в процесс дележа. Если задача кажется ему слишком сложной, начните рассуждать вслух:

– Давай дадим каждому по два печенья. Нет, не хватает, получается не поровну. Тогда по одному. Отлично, всем поровну, но два остались. Что с ними делать?

Ребенок может предложить разные варианты решения. Например, можно разломить каждое печенье пополам, тогда каждый получит по половинке. Но все равно одна половинка остается. Ее можно разделить на три части (тут вы можете объяснить, что одна треть от половинки – это 1/6), так что в результате у каждого из вас в руках окажется целое печенье плюс половинка печенья плюс одна шестая, а это то же самое, что целое печенье и четыре шестых. Или, если сократить дробь, одно целое и две третьих печенья.

Одному из авторов этой книги довелось однажды оказаться за рулем автомобиля, на заднем сиденье которого трое детей в возрасте 11, 8 и 5 лет пытались поделить между собой четыре конфеты. Оба родителя сидели впереди. В дележе конфет принимали участие все дети, и предложенные варианты решения разнились от «по одной на каждого, а родителям по половинке» до «по одной на каждого, а последнюю разыграть». В конце концов они договорились, что делить надо поровну, поэтому каждый взял себе по конфете, а от оставшейся решено было откусывать по очереди, так что последнему пришлось слизывать начинку с фантика, но зато справедливость восторжествовала.

 

Что больше?
Выясняем, что от перемены мест множителей произведение не меняется

Способствует закреплению навыка умножения.

Что тебе больше по вкусу: 8 упаковок конфет по 4 конфеты в каждой или 4 упаковки по 8 конфет в каждой?

Если задать такой вопрос маленькому ребенку, то он, возможно, вообразит, что один из предложенных вариантов сулит ему больше конфет, хотя ответ в обоих случаях один и тот же. Самый простой способ убедиться в этом – посчитать. Разложив 32 драже M&M’s в 4 ряда по 8, он легко убедится, что 4 раза по 8 и 8 раз по 4 – это одно и то же.

Дети постарше уже знают, что 4 × 8 = 8 × 4 (это, кстати, один из способов облегчить запоминание таблицы умножения: зачем тебе учить, сколько будет 8 × 4, если ты уже выучил, что 4 × 8 = 32). Но, если выйти за пределы чисел от одного до десяти, уверенности у них поубавится. А если надо выяснить, где больше конфет: в 486 коробках по 23 конфеты в каждой или в 23 ящиках, в каждом из которых лежат 486 конфет? Тут поневоле задумаешься.

Правило, которое гласит, что от перемены мест множителей произведение не меняется, является основополагающим, поэтому к нему стоит возвращаться снова и снова, чтобы оно хорошенько улеглось в голове.

Сколько будет 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9? А теперь скажи, сколько будет 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1? Обратите внимание: даже у взрослого человека может закрасться опасение, что во втором случае ответ получится больше, хотя калькулятор подтвердит, что это не так.

 

Что стоит имя?
Превращаем слова в цифры

Способствует закреплению навыка сложения и учит обращаться с деньгами.

В английском алфавите 26 букв. Попробуем каждую букву по порядку представить как последовательно возрастающее количество пенсов: A – 1 пенс, B – 2 пенса, C – 3 пенса и т. д. до буквы Z, которая равна 26 пенсам.

А теперь пишем на бумаге свое имя и подсчитываем общую сумму пенсов:

MIKE = 13 + 9 + 11 + 5 = 38 пенсов.

Кто из вас обладатель самого «дорогого» имени? От чего это зависит?

Самыми прибыльными оказываются буквы, которые идут в конце алфавита, поэтому дети, в именах которых есть Y и Z, оказываются в выигрыше по сравнению с теми, кто пишется через B или С. Из гласных выше всего котируются U и О. Коротенькое имя Zoe будет дороже, чем имя Abigail, в котором целых семь букв.

Переберите имена родных и друзей. У кого из них самое высокобюджетное имя? А есть кто-то, у кого имя стоит целый фунт?

Какое самое длинное имя можно было бы себе купить за один фунт?

Если не получается угадать, имя можно выдумать.


Угадайка
Вариация на тему классической забавы «Угадай, сколько конфет в банке?»

Вам понадобится банка, наполненная сухими сыпучими продуктами (подойдут фасоль или изюм).

Способствует осознанному восприятию чисел и умению мыслить большими величинами.

Это отличный способ занять ребенка, когда вы что-то готовите на кухне.

Требуется угадать, сколько в банке фасолин.

Предварительно стоит вместе поразмышлять о том, чем, кроме простого пересчета, можно проверить правильность ответа, например:

• посчитать, сколько фасолин помещается в крышку банки, а потом сосчитать количество мерок;

• разложить фасолины в один слой на поверхности конверта, а потом, соизмерив это количество с остатком в банке, посчитать, сколько таких конвертов получится выложить ее содержимым;

• взвесить содержимое одной мерной ложки, наполненной фасолью. Сколько таких ложек в банке?

Теперь можете предоставить ребенка самому себе, и пусть считает на здоровье.

 

Одну минуточку!
Сколько на самом деле длится минута?

Вам понадобятся часы с секундной стрелкой либо секундомер или таймер в вашем мобильном телефоне.

Способствует развитию счетных навыков и чувства времени.

По очереди пытаемся угадать, сколько длится минута.

У одного из играющих в руках таймер, он говорит: «Время пошло!»

Другой, когда, по его мнению, минута истекла, говорит: «Стоп!»

Кто из вас точнее угадает, сколько именно длится минута?

А что будет, если вы потренируетесь? Есть улучшения?

(Старая, проверенная временем подсказка: попробуйте посчитать попугаев. За десять секунд вы успеете мысленно произнести: «Раз попугай, два попугай, три попугай» и так до десятого попугая. Попробуйте, вдруг поможет? Точность зависит от того, с какой скоростью вы произносите слово «попугай»).


Сдачи не надо
Какую сумму можно заплатить без сдачи?

Способствует формированию навыков счета и представлений о денежных единицах.

Достаньте из кошелька или из кармана пригоршню мелочи.

Требуется определить, какую сумму можно заплатить без сдачи, используя все или некоторые из лежащих перед вами монет.

Предположим, у вас есть по одной монете достоинством в 20 пенсов и 10 пенсов, три пятипенсовика и одна монета в 2 пенса.

Можно ли, используя эту мелочь, набрать 32 пенса без сдачи? Элементарно: 20 пенсов да 10 пенсов да 2 пенса. А вот 43 уже не получится, без сдачи выйдет только 42 (20 + 10 + 5 + 5 + 2 = 42).

Далее возможны любые варианты для импровизации.

Например, какую самую большую сумму, не равную 1 фунту, можно заплатить без сдачи, имея в распоряжении монеты в 1 пенни, 2 пенса, 5 пенсов, 20 пенсов и 50 пенсов? Количество монет любого достоинства не ограничивается.

Ответ: Сумма может составить, например, 1 фунт 43 пенса, что не равно 1 фунту. Для этого вам понадобится одна монета в 50 пенсов, 4 двадцатипенсовика, один пятипенсовик и четыре монеты по 2 пенса. Убедитесь сами.

 

Камень + ножницы + бумага равно…
Быстрый счет на пальцах

Способствует развитию арифметических навыков.

Игра идет по тому же принципу, что и классические «камень, ножницы, бумага». Участников может быть двое или трое, каждый держит одну руку за спиной и по команде водящего: «Раз, два, три!» на счет «три» выбрасывает вперед руку в кулаке или с разжатыми пальцами. Количество «предъявленных» пальцев варьируется от ноля до пяти. Тот, кто первым правильно сосчитал общее количество, получает одно очко.

Если ребенок считает уверенно, задание можно усложнить, например прятать обе руки, тогда каждый из участников сможет показать число от ноля до десяти. Если вы играете вдвоем, можно называть не сумму пальцев, а произведение, а чтобы потренироваться в самых сложных разделах таблицы умножения, стоит договориться, что каждый из играющих не имеет права выкидывать менее пяти пальцев.

 

Семью восемь бум!
А не скажешь – будет бум!

Способствует развитию навыков устного счета и изучению таблицы умножения.

Как это ни странно, детям часто легче сосредоточиться на умственной деятельности, если сочетать ее с физической активностью, и эта игра – яркий тому пример. Правда, чтобы в нее играть, вам должно хватить сил посадить ребенка себе на плечи (или потребуется ребенок в весе пера). Катая его на плечах по квартире или во время прогулки, вы спрашиваете: «Сколько будет 3 + 5?» или «Сколько будет 10: 2?». Правильный ответ должен успеть прозвучать до того, как вы дошли до следующего дверного проема или фонарного столба, иначе есть риск (легонько!)«получить по башке». Разумеется, вы оба прекрасно понимаете, что серьезного столкновения никто не допустит, но напускной ужас, когда верхняя притолока или фонарный столб неуклонно приближаются и надо срочно найти правильный ответ, придаст игре особую остроту. Очень может быть, что ребенок взмолится: «Погоди, дай подумать», и вам стоит послушаться и сбавить обороты. Это не нарушение правил игры.

Если отпрыска так легко на плечи не посадишь или же он боится высоты, есть другие способы поучить умножение в движении. Один из них – с помощью мяча. Вы бросаете мяч и на подаче задаете вопрос: «Четырежды девять?» Самое интересное, что концентрация на физическом действии помогает сконцентрироваться на счете, в чем вы легко убедитесь.

 

Ладушки под счет
Двойки, тройки и пятерки в ритме

Способствует счету двойками, тройками, пятерками, десятками и т. д.

Ладушки под счет – простой и веселый способ чем-то занять малыша, пока набирается ванна или в духовке греется ужин. Повернитесь друг к другу лицом и попеременно хлопайте то ладонью о ладонь, то в ладони друг друга, называя в этот момент хором нужную цифру, например: хлоп, пять, хлоп, десять, хлоп, пятнадцать…

Выбирайте лидера по очереди. Лидер задает темп, а второй должен не отставать.

Получается?


Бим-бом
Игра, в которой важнее всего не потерять голову

Способствует оттачиванию таблицы умножения на 3 или на 5 (или любой другой), закреплению навыка деления на заданное число.

Играющие по очереди называют числа по порядку, двигаясь от единицы по возрастающей, при этом всякий раз вместо числа, кратного 3, вы говорите «бим», а вместо числа, кратного 5, – «бом». Итак, игра началась: раз… два… бим… четыре… бом… бим… семь…

Если число одновременно кратно и 3 и 5, оно заменяется словом «бимбом», то есть вместо 15 вы говорите «бимбом».

Правила можно усложнить. Например, вы договариваетесь, что «бим» означает число, кратное трем, а также число, в состав которого входит цифра 3.

Кроме того, можно выбрать другие разделы таблицы умножения или добавить дополнительный раздел. Тогда вам понадобится третье слово. Скажем, все числа, кратные семи, превратятся в «бам».

Можно начинать счет не с единицы, а с 20 или даже 100, что значительно труднее.


Мой тайный код
Как взломать тайный код?

Способствует развитию догадки и навыков устного счета.

Один из играющих выбирает правило, по которому он будет изменять каждое предложенное ему число. Это тайный код, который знает только он. Предположим, это будет «умножить на 2 плюс 1». Ему называют число 10, а он отвечает: «Двадцать один». Ему предлагают 0,5, а он говорит: «Два». Цель игры – «взломать» тайный код соперника.

Игра легко адаптируется под уровень математических познаний ребенка. Тайный код может быть элементарным, например «прибавить 2», или весьма изощренным, скажем, «округлить до ближайшего числа, кратного 6», или «возвести в квадрат и отнять 5». А можно еще хитрее: «Если нечетное, то плюс 10, если четное, то минус 1».

Если хотите, чтобы дело шло повеселее, добавьте «компьютерный голос». Так, если вам назвали число 5, а ваш тайный код – «умножить на 2 плюс 1», вы произносите с соответствующей интонацией: «Дождитесь ответа программы. Результат на выходе – одиннадцать».

Можно поменяться ролями и в свою очередь разгадывать тайный код ребенка. В любом случае это отлично тренирует навыки устного счета.


Таинственные формы
Геометрическая вариация на тему традиционной «угадайки»

Способствует развитию математического языка и геометрического мышления.

Играть можно где угодно, но, как любая «угадайка», это замечательная игра во время продолжительной поездки в автомобиле.

Ведущий оглядывается по сторонам и выбирает некий предмет или объект, желательно имеющий четкую геометрическую форму, например высоковольтную вышку за окном или бутылку воды на сиденье рядом.

Второй играющий должен отгадать, что задумал ведущий. Он имеет право задать 20 вопросов о форме этого предмета, на которые ведущий может отвечать только «да» или «нет», поэтому вопрос «Там есть изгиб?» абсолютно корректен, а вот вопрос «Сколько там сторон?» останется без ответа.

Каждая попытка угадать, то есть назвать предмет, расценивается как полноценный вопрос. Больше 20 вопросов задавать нельзя, это проигрыш.


Найди спрятанное число
Хитрый способ отгадать задуманное число

Способствует развитию логики и представлений о различных числовых множествах.

Загадываем число в заранее оговоренном промежутке, например от 1 до 100.

Ребенок должен отгадать это число за 10 (возможны варианты) вопросов, на которые вы отвечаете только «да» или «нет».

Вопрос надо ставить с умом, и тут может понадобиться ваша помощь. Например, вопрос «Это четное число?» очень к месту, потому что ответ на него сразу уменьшает количество возможных вариантов вдвое. Младшим детям надо обязательно подсказать, что ответ «нет» не менее значим и важен, чем ответ «да», и если на вопрос, четное ли это число, им ответили «нет», то в вопросе «Это нечетное число?» нет никакой необходимости (если, конечно, вы договорились загадывать целые числа).


Считанные хлопья
Завтрак «на глазок»

Способствует развитию счетных навыков и прикидки.

За завтраком, когда ребенок положит себе хлопья, попросите его угадать, сколько хлопьев у него в тарелке. Все остальные, сидящие рядом, включая вас, тоже могут в этом поучаствовать. Теперь проверяем. Если время позволяет, можно действительно пересчитать хлопья, пока их не залили молоком. Если времени на это нет, смотрим, сколько приблизительно помещается в ложке (скорее всего, 5–6 хлопьев), и считаем ложки по мере потребления, а потом перемножаем. Побеждает тот, кто оказался ближе всего к истине. Если за столом несколько членов семьи, можно попробовать определить на глаз, у кого самая большая порция, а потом проверить.

Утром все торопятся, поэтому для этой игры лучше всего подойдут крупные по размеру хлопья, чтобы в тарелке их оказалось не более 20. Мелкие воздушные рисинки лучше приберечь до воскресенья, когда никто никуда не спешит (или для тех случаев, когда ребенка срочно надо чем-то надолго занять).

 

Дробная пицца
Лучший способ продемонстрировать, что 2/6 и  – это одно и то же

Способствует усвоению простых дробей, действий с дробями (сложение и расширение).

Нам понадобится пицца целиком, потому что весь смысл в том, чтобы ребенок либо резал ее самостоятельно, либо объяснял вам, как резать.

Начните с вопросов:

– Сколько нас?

– На какие куски режем пиццу?

Даже если пиццу собираются есть двое, ее удобнее разрезать на несколько частей, поэтому пицца на двоих может состоять из 6 (каждому по 3) или даже 8 (каждому по 4) кусков. Вот вам время и случай показать ребенку, что половина – это то же самое, что 2/4, 3/6 или 4/8.

Если претендентов на пиццу трое, то каждый получит по 2/6, или по .

Для деления на сектора пицца подходит идеально, потому что она: а) круглая, б) съедается без остатка, поэтому ее сразу режут целиком.

Но можно использовать для этой цели любой круглый пирог (если вам нужно разделить его на 8 частей, сперва поделите на 4, а потом каждую четверть поделите пополам).

 

Вилки-ложки-поварешки
Выкладываем треугольники из ножей, вилок и ложек

Способствует развитию геометрического мышления и знакомит со свойствами треугольников.

Ваша задача – выложить треугольник из столовых приборов или любых находящихся на столе предметов с четкими прямыми контурами: ножей, вилок, подтарельников, меню и т. д.

Теперь о баллах: за треугольник, у которого все углы острые, то есть меньше прямого, – один балл.

За треугольник, у которого один угол больше прямого, – три балла.

За прямоугольный треугольник – пять баллов.

Величину угла транспортиром мерить не надо, но точность приветствуется. Проверить можно, приложив угол салфетки или что-то прямоугольное, например кредитку, если вы ждете заказ в ресторане.

А что делать, если три предмета в треугольник не складываются? Баллов за это не полагается, но стоит разобраться, почему так произошло. Это бывает, если длинная сторона оказывается длиннее, чем две другие, взятые вместе. Поэтому из корешка меню и двух чайных ложечек, как их ни крути, треугольник не получится.

 

Математика в супермаркете
Учиться считать деньги никогда не рано

Способствует развитию навыков прикидки, оценки и сопоставления величин, практическому приложению школьных знаний.

Если вы идете с ребенком в супермаркет или в ближайший магазин за продуктами, перед вами открываются неограниченные возможности, чтобы извлечь из математики практическую пользу.

Вот самое простое задание:

– Какая фасоль тут у нас самая дешевая (при условии, что вы согласны на любую марку)?

Не менее увлекательным занятием будет отслеживание общей суммы вашей покупки. Каждый считает сам. Чтобы дело пошло легче, предложите округлять цены до ближайшего целого значения фунта или 50 пенсов. Стоя в очереди в кассу, не забудьте обменяться финансовыми прогнозами, а потом проверьте, кто посчитал точнее. Победитель получает… то, что в данный момент он сможет получить, решать вам.


Математика для сладкоежек
Конфеты как идеальный счетный материал и мотиватор

Способствует развитию навыков устного счета и быстрого подбора слагаемых до заданной суммы.

В эту игру лучше всего играть в кондитерской лавке, если в ваших краях такая есть, или в каком-то другом магазине, где конфеты продаются поштучно и стоят не более 10 пенсов за штуку. Важно, чтобы ценники были написаны крупно, а продавец или хозяин не возражал против ваших забав.

Ребенку выдается некоторая сумма – например 2 фунта, – на которую он может купить конфет, но, если останется сдача, ее придется вернуть в семейный бюджет. Ребенок постарается истратить деньги без остатка. Будет еще интереснее, если за конфетами вы пойдете большой компанией, с братьями-сестрами или друзьями, чтобы можно было считать сообща. Правда, в этом случае каждый должен получить по 2 фунта. Детям младше 8 лет нужно прийти на помощь, если они вдруг запутаются.

Может случиться так, что, набирая конфеты, ребенок обсчитается и выйдет из берегов, тогда, во избежание конфуза, ему на это необходимо намекнуть. Когда, по его ощущениям, у него в пакете конфет ровно на 2 фунта, время пройти на кассу. Если налицо серьезный перебор, с чем-то придется расстаться, если недобор, то на сдачу можно что-то докупить: подобные ситуации – лучший способ научиться жить по средствам, не отказывая себе в радостях.

 

Инвентаризация
Подсчитаем, сколько всего товаров в супермаркете

Способствует формированию навыка прикидки и умножения.

В супермаркетах товары распределены по категориям, но никому и в голову не приходило подсчитать, сколько там чего. Предложите ребенку заняться этим. Задания могут быть самыми разными, например:

• Если бы все места на парковке были заняты, сколько бы сюда поместилось машин?

• Сколько у них тут рулонов туалетной бумаги?

• Можно пойти еще дальше и привязать результат подсчетов к повседневной жизни:

– Сколько нам потребуется времени, чтобы использовать всю эту бумагу?

Если ваш отпрыск – не малолетний Гаусс или Перельман, за точностью можно не гнаться и что-то определять «на глазок». Тут вам опять пригодятся округляшки:

– В каждом ряду можно запарковать 23 машины (округляем до 20), а всего на парковке 18 рядов (снова округляем до 20), теперь 20 умножаем на 20… так, значит, тут стоит примерно… 400 автомобилей!


Ах как долго-долго едем!
Считать время, оставшееся до конца маршрута, может быть весело

Способствует формированию навыка предварительной оценки.

Годится для любой продолжительной по времени поездки, особенно на автомобиле. Вопеж на тему «Ну когда-а-а мы уже прие-е-едем…» начинается, по нашим оценкам, где-то через полчаса после поворота ключа в замке зажигания. Теперь самое время обернуть все в игру с неограниченным количеством участников:

• Кто точнее всех предскажет число, которое выскочит на счетчике пробега, когда мы прибудем к месту назначения?

• Кто точнее всех назовет время нашего приезда на место назначения?


Если вы едете по навигатору, то с его помощью, разумеется, легко узнать и предполагаемый километраж, и расчетное время в пути, но это не испортит вам удовольствия. Во-первых, навигатор часто ошибается. Во-вторых, он вряд ли может знать заранее, что вы вдруг повернете не туда или заедете в супермаркет, потому что все проголодались.

Так что навигатор может участвовать в игре наравне с вами, надо будет просто запомнить время и километраж, которые он называл в начале пути, а то знаем мы эти навигаторы, вечно они путаются в показаниях и не краснеют. С ними надо держать ухо востро.


Стоим на красном
Кто угадает, сколько нам ждать зеленого сигнала светофора?

Способствует развитию прикидки и чувства времени.

Вы застряли в пробке на светофоре, и перед вами вереница машин. Как узнать, сколько еще ждать? Когда загорится зеленый свет, подсчитайте, сколько автомобилей смогли проехать. Если перед вами 19 авто, а на зеленый успевают только 6, значит, вы поедете не раньше, чем через 2 светофора. (Эта игра годится для любой очереди: например, вы приехали в Парк развлечений и надо подождать мест в автопоезде. Сколько человек впереди вас? Сколько пассажиров может принять каждый поезд за одну посадку? Сколько ждать следующего поезда?)

Можно рассмотреть ситуацию в пробке с точки зрения физики. Замерьте временной интервал между началом движения первой машины на светофоре и вашей. Потом оцените расстояние между вашим авто и светофором. Зная время и расстояние, можно посчитать скорость «пульсации». Если посмотреть на дорожную пробку с высоты птичьего полета, ее пульсация напоминает волну. (Чтобы узнать, как это выглядит, наберите в поисковой строке «продольная волна», можно найти интересное видео или анимацию.)

 

Турнир Большого шлема
Оцениваем здравый смысл окружающих

Способствует формированию представления о социологических исследованиях, рейтингах, процентных соотношениях.

Играть в эту игру на шоссе не получится, надо выбрать место, где вам встретятся велосипедисты. Кого на дороге больше: велосипедистов в защитных шлемах или с непокрытой головой? Какой цвет автомобиля предпочитают водители: желтый или зеленый?

Вот замечательный способ занять ребенка в машине. Чтобы обострить ситуацию, можно добавить элемент состязательности: «За каждого велосипедиста в шлеме ты получаешь 1 балл, за каждого без шлема 1 балл получаю я. Играем до 20. Ну, кто первый наберет 20 баллов?»

Когда в игре определится победитель, у вас накопится материал для социологического исследования. Предположим, вам встретилось 20 велосипедистов в шлемах и 15 без шлемов, значит, защитными шлемами пользуются 20 велосипедистов из 35. Теперь определяем процентное соотношение: (20 × 100) ÷ 35 = 57,14, то есть чуть меньше 60 %. Вывод: по данным вашего социологического анализа, почти 60 % велосипедистов ездят в защитных шлемах, по крайней мере в вашем районе.

 

Шире шаг!
Привычная игра-ходилка, только в три раза быстрее!

Вам понадобится любая настольная игра-ходилка с игровым полем, фишками и кубиком.

Способствует формированию навыков сложения и умножения.

Раскладываем игровое поле, выставляем фишки на старте и бросаем кубик, но результат вы умножаете на 3, то есть передвигаете свою фишку не на выпавшее по кубику число, а на отметку, соответствующую числу, в 3 раза большему. Выпала единица – шагаете на 3, выпала шестерка – прыгаете аж на 18. Это, во-первых, даст возможность отполировать таблицу умножения на 3, а во-вторых, позволит провернуть игру в 3 раза быстрее, так что для родителей ситуация беспроигрышная.

Вот варианты «экспресс-версий» для самых популярных настольных игр:

• «Монополия»: на старте разделите поровну все карточки на право собственности, а дальше каждый из играющих либо строит дома или отели, либо взимает или платит аренду.

• «Снап» или «Лягушка»: как только у одного из играющих кончаются карты рубашкой вверх, то есть он открыл все имеющиеся у него карты, но совпадения с открытыми картами соперника не случилось, он признает свое поражение, и игра заканчивается.

• «Бинго»: закрываем не только выпавшее число, но и число, на 10 большее или меньшее, например, если выпадает 23, закрыть можно 13, 23 и 33.


Равняйсь!
Азартная игра на вычитание

Вам понадобится колода игральных карт и трое играющих.

Способствует развитию арифметических навыков.

Играть можно где угодно, но обязательно втроем, сидя напротив друг друга. До начала игры оставьте в колоде только тузы и карты от двоек до десяток. Перетасуйте и выберите, кому водить. Водящий сдает по карте каждому из игроков, а потом командует: «Ра-а-авняйсь!» Каждый игрок поднимает свою карту, держа ее рубашкой к себе, а лицом наружу. Таким образом, свою карту он не видит, зато видит карту соперника.

Водящий, который видит обе карты, называет их сумму, например, если у одного из игроков пятерка, а у другого семерка, водящий говорит: «Двенадцать!» Задача каждого из игроков первым подсчитать достоинство своей карты и получить за это одно очко. Если это слишком легко, водящий называет не сумму, а произведение двух карт. В каждом следующем раунде водящий меняется.

 

Соло для лягушки
Получится ли у вас найти парную карту до того, как вы переберете всю колоду?

Вам понадобится колода игральных карт.

Способствует концентрации при счете и развитию реакции.

Этот несложный пасьянс ваш ребенок легко научится раскладывать сам.

Тасуем колоду, кладем ее рубашкой вверх и начинаем открывать карты по одной. При этом вслух называем карты в порядке возрастания начиная с туза, то есть туз, двойка, тройка… и дальше десятка, валет, дама, король. Если достоинство открытой карты совпадает с названной – это один балл. При таком совпадении лягушка говорит: «Ам!» Если играющий перебрал всю колоду, но ни одного совпадения не произошло, он теряет балл. В самом начале игры ему дается фора в 5 баллов. Игра идет до 10. Когда количество баллов сходит на ноль, игра считается проигранной.

Конечно, можно перебрать всю колоду без единого совпадения, но вероятность этого 30 %, так что этот пасьянс отнюдь не является безнадежным, и играющий чаще выигрывает, чем проигрывает.


Указка
Рисуем по точным указаниям

Вам понадобятся бумага и карандаши.

Способствует овладению математическим языком.

Эта игра дает вам возможность с пользой провести время, когда приходится чего-то ждать: очереди у врача, официанта в ресторане или ужина.

Водящий рисует схематичное изображение человека или животного, используя основные геометрические фигуры: треугольники, круги, квадраты и прямоугольники. Например, глазами могут служить два треугольника, ногами – два узких прямоугольника. Рисунок он никому не показывает, но пытается описать его так, чтобы другой играющий мог воспроизвести нарисованное.

Вот как может начинаться подобное описание:

– Нарисуй прямоугольник 5 см в длину на 2 см в высоту (задать размеры можно с помощью рук, например: нарисуй прямоугольник вот такой величины).

Рисующий имеет право на уточняющие вопросы. В конце копия и оригинал сравниваются.

 

Винни
Привет от алгебры, или Алгебра «с приветом»

Способствует умению находить неизвестное.

Если 3 + x = 7, то чему равен x? От подобной постановки вопроса у родителей мурашки бегут по спине, а у детей тускнеют глаза. Но все изменится, если x превратится в какую-то очевидную нелепицу, например… в мягкую игрушку. В плюшевого мишку, которого зовут конечно же Винни.

– Давай поиграем в Винни, – заявляете вы как ни в чем не бывало. – 4 плюс 2 равно… Винни. Ты знаешь, сколько это – Винни?

– Винни – это 6!

– Правильно! Давай еще раз. Только теперь Винни решил нас обхитрить: 3 плюс Винни будет 7. Значит, Винни – это…

Если дело идет туго, посчитайте вместе на пальцах.

– Вот у нас 3 пальца, а мы хотим 7. Сколько надо прибавить?

И вместе вы, несомненно, выясните, что на этот раз Винни равен 4.


Пижамный отсчет
Творческий подход к укладыванию спать вовремя

Способствует усвоению простых и десятичных дробей и числового ряда.

Хотите придать ребенку некоторое ускорение, чтобы он перестал канителиться? Вот чудесный способ.

«Пора в кровать. Если, пока я считаю до десяти, ты не уляжешься, мы прочитаем на одну главу меньше». Знакомая ситуация? В таких случаях «жесткие сроки» действительно могут помочь, но только если ребенок готов сделать то, чего вы от него добиваетесь. На самом деле он будет упираться как может, и, хотя вы твердо заявили, что на счет «десять» он должен быть в пижаме, он не спешит стягивать джинсы, а вы уж досчитали до пяти. Что прикажете делать?

Самый простой выход – считать помедленней, но можно разнообразить числовой ряд: «Шесть… шесть с половиной… шесть и три четверти… семь… 7,2… 7,5…»

Кроме того, можно посчитать не до 10, а, скажем, до 13. Или использовать не прямой, а обратный отсчет. Или посчитать двойками, пятерками, дюжинами или вообще тысячами.

 

Поиск

МАТЕМАТИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ФИЗИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ХИМИЯ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

МХК

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

МУЗЫКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

РОБОТОТЕХНИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж

ВСЕРОССИЙСКИЕ ПРОВЕРОЧНЫЕ РАБОТЫ

ЭРУДИТ-КОМПАНИЯ

ДОСУГ ШКОЛЬНИКА

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net Самое современное лечение грыж
Яндекс.Метрика Рейтинг@Mail.ru